Part Number Hot Search : 
LT1171CQ CVCO55B 2405S TDA72 SK343 256713 LT1171CQ LH0084
Product Description
Full Text Search
 

To Download BCR20AM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MITSUBISHI SEMICONDUCTOR TRIAC
BCR20AM
MEDIUM POWER USE NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
BCR20AM
OUTLINE DRAWING
Dimensions in mm
10.5 MAX.
4.5
16 MAX. 3.2 0.2 7.0
1.3
12.5 MIN.
3.6
TYPE NAME VOLTAGE CLASS
3.6 0.2
1.0
0.8
E
2.5 2.5 0.5 2.6

................................................................ 20A q VDRM ...................................................... 400V / 600V q IFGT !, IRGT ! , IRGT # ................... 30mA (20mA) V5
q IT (RMS)
T1 TERMINAL T2 TERMINAL GATE TERMINAL T2 TERMINAL
TO-220
APPLICATION Vacuum cleaner, light dimmer, copying machine, other control of motor and heater
MAXIMUM RATINGS
Symbol VDRM VDSM Parameter Repetitive peak off-state voltageV1 Non-repetitive peak off-state voltageV1 Voltage class 8 400 500 12 600 720 Unit V V
Symbol IT (RMS) ITSM I 2t PGM PG (AV) VGM IGM Tj Tstg --
Parameter RMS on-state current Surge on-state current I 2t for fusing Peak gate power dissipation Average gate power dissipation Peak gate voltage Peak gate current Junction temperature Storage temperature Weight Typical value
Conditions Commercial frequency, sine full wave, Tc=105C 60Hz sinewave 1 full cycle, peak value, non-repetitive Value corresponding to 1 cycle of half wave 60Hz, surge on-state current
4.5
V Measurement point of case temperature
Ratings 20 200 167 5 0.5 10 2 -40 ~ +125 -40 ~ +125 2.0
Unit A A A2s W W V A C C g
Feb.1999
V1. Gate open.
MITSUBISHI SEMICONDUCTOR TRIAC
BCR20AM
MEDIUM POWER USE NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Symbol IDRM VTM VFGT ! VRGT ! VRGT # IFGT ! IRGT ! IRGT # VGD Rth (j-c) (dv/dt)c Parameter Repetitive peak off-state current On-state voltage
!
Test conditions Tj=125C, VDRM applied Tc=25C, ITM=30A, Instantaneous measurement
@ # !
Limits Min. -- -- -- -- -- -- -- -- 0.2 --
V3
Typ. -- -- -- -- -- -- -- -- -- -- --
Max. 2.0 1.5 1.5 1.5 1.5 30 V5 30 V5 30 V5 -- 0.8 --
Unit mA V V V V mA mA mA V C/ W V/s
Gate trigger voltageV2
Tj=25C, VD=6V, RL=6, RG=330 V3
Gate trigger
current V2
@ #
Tj=25C, VD=6V, RL=6, Tj=125C, VD=1/2VDRM Junction to case V4
RG=330 V3
Gate non-trigger voltage Thermal resistance Critical-rate of rise of off-state commutating voltage
V2. Measurement using the gate trigger characteristics measurement circuit. V3. The critical-rate of rise of the off-state commutating voltage is shown in the table below. V4. The contact thermal resistance Rth (c-f) in case of greasing is 1C/W. V5. High sensitivity (IGT 20mA) is also available. (IGT itme )
Voltage class
VDRM (V)
(dv/dt)c Symbol R Min. -- 10 V/s R -- 10 Unit
Test conditions 1. Junction temperature Tj=125C 2. Rate of decay of on-atate commutating current (dv/dt)c=-10A/ms 3. Peak off-state voltage VD=400V
Commutating voltage and current waveforms (inductive load)
SUPPLY VOLTAGE (di/dt)c TIME TIME VD TIME
8
400 L
MAIN CURRENT MAIN VOLTAGE (dv/dt)c
12
600 L
PERFORMANCE CURVES
MAXIMUM ON-STATE CHARACTERISTICS RATED SURGE ON-STATE CURRENT 200
SURGE ON-STATE CURRENT (A)
ON-STATE CURRENT (A)
103 7 5 3 2 102 7 5 3 2 101 7 5 3 2
180 160 140 120 100 80 60 40 20 0 100 2 3 4 5 7 101 2 3 4 5 7 102
Tj = 125C
Tj = 25C
100 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 ON-STATE VOLTAGE (V)
CONDUCTION TIME (CYCLES AT 60Hz)
Feb.1999
MITSUBISHI SEMICONDUCTOR TRIAC
BCR20AM
MEDIUM POWER USE NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
102
7 5 3 2
100 (%)
GATE CHARACTERISTICS (, AND )
GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE 103
7 5 3 2
IRGT I
GATE VOLTAGE (V)
VGM = 10V
PG(AV) = 0.5W PGM = 5W IGM = 2A
101
7 5 3 VGT = 1.5V 2
GATE TRIGGER CURRENT (Tj = tC) GATE TRIGGER CURRENT (Tj = 25C)
102
7 5 3 2
IFGT I IRGT III
100
7 5 3 2
101
7 5 3 2
IFGT I , IRGT I , IRGT III VGD = 0.2V 10-1 1 10 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 GATE CURRENT (mA)
100 -60 -40 -20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (C)
100 (%)
GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE 103 7 5 4 3 2 102 7 5 4 3 2 101 -60 -40 -20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (C)
MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS
TRANSIENT THERMAL IMPEDANCE (C/W)
1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 -1 10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 2 3 5 7103 CONDUCTION TIME (CYCLES AT 60Hz)
TYPICAL EXAMPLE
GATE TRIGGER VOLTAGE (Tj = tC) GATE TRIGGER VOLTAGE (Tj = 25C)
MAXIMUM ON-STATE POWER DISSIPATION
ALLOWABLE CASE TEMPERATURE VS. RMS ON-STATE CURRENT 160
ON-STATE POWER DISSIPATION (W)
50
CASE TEMPERATURE (C)
16 20 24 28 32
360 CONDUCTION 40 RESISTIVE, INDUCTIVE LOADS 30
140 120 100 80 360 CONDUCTION 60 RESISTIVE, INDUCTIVE 40 LOADS 20 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 0 0 2 4 6 8 10 12 14 16 18 20 RMS ON-STATE CURRENT (A)
20
10
0
0
4
8
12
RMS ON-STATE CURRENT (A)
Feb.1999
MITSUBISHI SEMICONDUCTOR TRIAC
BCR20AM
MEDIUM POWER USE NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
ALLOWABLE CASE TEMPERATURE VS. RMS ON-STATE CURRENT 160
ALLOWABLE CASE TEMPERATURE VS. RMS ON-STATE CURRENT 160
AMBIENT TEMPERATURE (C)
140 120 100 80 60 40 20 0 0
AMBIENT TEMPERATURE (C)
ALL FINS ARE BLACK PAINTED ALUMINUM AND GREASED NATURAL CONVECTION 160 160 t2.3 100 100 t2.3 60 60 t2.3
140 120 100 80 60 40 20 0 0
NATURAL CONVECTION NO FINS CURVES APPLY REGARDLESS OF CONDUCTION ANGLE RESISTIVE, INDUCTIVE LOADS
5
10
15
20
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 RMS ON-STATE CURRENT (A)
RMS ON-STATE CURRENT (A)
105
100 (%)
REPETITIVE PEAK OFF-STATE CURRENT VS. JUNCTION TEMPERATURE
7 5 3 2
100 (%)
HOLDING CURRENT VS. JUNCTION TEMPERATURE 103
7 5 4 3 2
REPETITIVE PEAK OFF-STATE CURRENT (Tj = tC) REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25C)
TYPICAL EXAMPLE IH(typ) = 20mA
104
7 5 3 2
HOLDING CURRENT (Tj = tC) HOLDING CURRENT (Tj = 25C)
102
7 5 4 3 2
103
7 5 3 2
102 -60 -40 -20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (C)
101 -60 -40 -20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (C)
LACHING CURRENT VS. JUNCTION TEMPERATURE
7 5
BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE
3 2
102
7 5 3 2
BREAKOVER VOLTAGE (Tj = tC) BREAKOVER VOLTAGE (Tj = 25C)
101
7 5 3 2
+ T2 , G+ TYPICAL - T2 , G- EXAMPLE
,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,,
DISTRIBUTION
100 (%)
103
160 140 120 100 80 60 40 20 0 -60 -40 -20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (C)
LACHING CURRENT (mA)
+ T2 , G- TYPICAL EXAMPLE
100 -60 -40 -20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (C)
Feb.1999
MITSUBISHI SEMICONDUCTOR TRIAC
BCR20AM
MEDIUM POWER USE NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
100 (%)
CRITICAL RATE OF RISE OF OFF-STATE COMMUTATING VOLTAGE (V/s)
BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE 160 140 TYPICAL EXAMPLE Tj = 125C III QUADRANT
COMMUTATION CHARACTERISTICS 102
7 MINIMUM 5 CHARAC3 TERISTICS 2 VALUE
III QUADRANT
BREAKOVER VOLTAGE (dv/dt = xV/s ) BREAKOVER VOLTAGE (dv/dt = 1V/s )
120 100 80 60 40 20 I QUADRANT
101
7 5 3 2 TYPICAL
0 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 RATE OF RISE OF OFF-STATE VOLTAGE (V/s)
EXAMPLE 100 Tj = 125C 7 I QUADRANT 5 IT = 4A = 500s 3 2 VD = 200V f = 3Hz -1 10 100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 RATE OF DECAY OF ON-STATE COMMUTATING CURRENT (A /ms)
GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH
GATE TRIGGER CHARACTERISTICS TEST CIRCUITS
6 6
100 (%)
103
7 5 4 3 2
TYPICAL EXAMPLE
GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC)
6V V
A 330
6V V
A 330
102
7 5 4 3 2
TEST PROCEDURE
6
TEST PROCEDURE
6V
A V 330
101 0 10
2
3 4 5 7 101
2
3 4 5 7 102
GATE TRIGGER PULSE WIDTH (s)
TEST PROCEDURE
Feb.1999


▲Up To Search▲   

 
Price & Availability of BCR20AM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X